Analysis of Genealogies

Andrej Mrvar

Genealogies...

Kinship records...

Sources of genealogies

People collect genealogical data for several different purposes:

- Research of different cultures in sociology, anthropology and history - kinship as fundamental social relation
- Genealogies of families and/or territorial units, e.g.,
- genealogy of Ragusan (Dubrovnik) nobel families
- Mormons genealogy

```
http://www.familytreemaker.com/
```

- genealogy of Škofja Loka district
- genealogy of American presidents
- Special genealogies
- Students and their PhD thesis advisors:
- Theoretical Computer Science Genealogy: http://sigact.acm.org/genealogy/
- Mathematics
https://genealogy.math.ndsu.nodak.edu/

Genealogies.

Detail from Mathematics Genealogy Project

Genealogies

Sources
Pepresentations
Sparse networks
Relinking
Comparison
Fragments
Hallobother-hallsister
Other analyses
The highest number of marrages
The highiest num ibel
ol children
The shorrest path between two kings

Apolying Paiek
Ore graphs
p-graphs
bipartite pastraphs
Assignments

al-Nisobuŕ chiysen w-Din Aba alfath, 106

Chiersiás Gregong, 1296
Biyemnios Manust, 1300
Metochines Theodore, 1315
Palamas Gregor, 1315

Supanus Johannes, 1569
Metzeer Georg, 1650 O 1646
Cemineranuas Ruboll, 1684
Pasch Lahann, 1633 Wather Mietharr C.J., 1687 1660 1656
Hausen Christan. 1713

Thitain Bemhard, t796 Lkitemberg Gevorg t765 Mayer Johann. t773
$\xrightarrow{\text { Juccobi Can, } 1825}$

Genealogies...

Kinship records

Sources
Pepresentations
Sparse networks
Relinking
Comparison
Fragments
Hallbrother-hallsister
Other analyses
The highest number of marnages
The highest number ol cinidren

The shortes path belween two kings

Applying Pajek
Ore graphs
p.graphs
bipartite p-graphs
Assignments

GEDCOM is standard for storing genealogical data, which is used to interchange and combine data from different programs. The following lines are extracted from the GEDCOM file of European Royal families.

```
O HEAD
1 FILE ROYALS.GED
0 @I58@ INDI
1 NAME Charles Philip Arthur/Windsor/
1 TITL Prince
1 SEX M
1 BIRT
2 DATE 14 NOV 1948
2 ~ P L A C ~ B u c k i n g h a m ~ P a l a c e , ~ L o n d o n ~
1 CHR
2 \text { DATE 15 DEC } 1 9 4 8
2 PLAC Buckingham Palace, Music Room
1 FAMS @F16@
1 FAMC @F14@
0 @I65@ INDI
1 NAME Diana Frances /Spencer/
1 TITL Lady
1 SEX F
1 BIRT
2 DATE 1 JUL 1961
2 PLAC Park House, Sandringham
1 CHR
2 PLAC Sandringham, Church
1 FAMS @F16@
1 FAMC @F78@
```

```
0 @I115@ INDI
```

0 @I115@ INDI
I NAME William Arthur Philip/Windsor/
I NAME William Arthur Philip/Windsor/
1 TITL Prince
1 TITL Prince
1 SEX M
1 SEX M
1 BIRT
1 BIRT
2 DATE 21 JUN 1982
2 DATE 21 JUN 1982
2 ~ P L A C ~ S t . M a r y ' s ~ H o s p i t a l , ~ P a d d i n g t o n ~
2 ~ P L A C ~ S t . M a r y ' s ~ H o s p i t a l , ~ P a d d i n g t o n ~
1 CHR
1 CHR
2 DATE 4 AUG 1982
2 DATE 4 AUG 1982
2 ~ P L A C ~ M u s i c ~ R o o m , ~ B u c k i n g h a m ~ P a l a c e ~
2 ~ P L A C ~ M u s i c ~ R o o m , ~ B u c k i n g h a m ~ P a l a c e ~
1 FAMC @F16@
1 FAMC @F16@
0@I116@ INDI
0@I116@ INDI
1 ~ N A M E ~ H e n r y ~ C h a r l e s ~ A l b e r t / W i n d s o r / ~
1 ~ N A M E ~ H e n r y ~ C h a r l e s ~ A l b e r t / W i n d s o r / ~
1 TITL Prince
1 TITL Prince
1 SEX M
1 SEX M
1 BIRT
1 BIRT
2 DATE 15 SEP 1984
2 DATE 15 SEP 1984
2 ~ P L A C ~ S t . M a r y ' s ~ H o s p . , ~ P a d d i n g t o n ~
2 ~ P L A C ~ S t . M a r y ' s ~ H o s p . , ~ P a d d i n g t o n ~
1 FAMC @F16@
1 FAMC @F16@
0 @F16@ FAM
0 @F16@ FAM
1 HUSB @I58@
1 HUSB @I58@
1 WIFE @I65@
1 WIFE @I65@
1 CHIL @I115@
1 CHIL @I115@
1 CHIL @I116@
1 CHIL @I116@
1 DIV N
1 DIV N
1 MARR
1 MARR
2 DATE 29 JUL 1981
2 DATE 29 JUL 1981
2 ~ P L A C ~ S t . P a u l ' s ~ C a t h e d r a l , ~ L o n d o n ~

```
2 ~ P L A C ~ S t . P a u l ' s ~ C a t h e d r a l , ~ L o n d o n ~
```


Representation of genealogies using networks

Genealogies can be represented as networks in different ways:

- as Ore-graph,
- as p-graph,
- as bipartite p-graph.

...Genealogies...

Ore-graph

Ore-graph:

In Ore-graph every person is represented by a vertex, marriages are represented with edges and relation is a parent of as arcs pointing from each of the parents to their children.

Read family.ged as Ore-graph.

...Genealogies...

p-graph

p-graph:

In p-graph vertices represent individuals or couples. In the case that person is not married yet (s)he is represented by a vertex, otherwise person is represented with the partner in a common vertex. There are only arcs in p-graphs - they point from children to their parents.

Read family.ged as p-graph.

...Genealogies...

Bipartite p-graph

Bipartite p-graph:

Bipartite p-graph has two types of vertices - vertices representing couples (rectangles) and vertices representing individuals (circles for women and triangles for men). Arcs again point from children to their parents.

Read family.ged as bipartite p-graph.

Sources
Representations
Sparse networks
Relinking
Comparison
Fragments
Halibrother-halisiste
Other analyses
The highest number of marriages
The highest number of children
The shortest path between two kings

Appilying Pajek
Ore graphs
p-graphs
bipartite p-graphs

Genealogies are sparse networks:

	Ore-graph				p-graph			
data	$\|V\|$	$\|E\|$	$\|A\|$	$\frac{\|L\|}{\|V\|}$	$\left\|V_{i p}\right\|$	$\left\|V_{c p}\right\|$	$\left\|A_{p}\right\|$	$\frac{\left\|A_{p}\right\|}{\left\|V_{p}\right\|}$
Bruno	15512	4841	18664	1.52	6000	5289	10053	0.89
Combo	20350	7248	26199	1.64	6931	7945	14845	1.00
Dodderer	16761	5650	22425	1.68	6029	5652	11765	1.01
Drame	29606	8256	41814	1.69	13254	8939	21862	0.99
Little	25968	8778	34640	1.67	9212	8850	18233	1.01
President	2145	978	2223	1.49	218	1042	1222	0.97
Tillotsn	42559	12796	54043	1.57	15177	15959	31234	1.00
Loka	47956	14154	68052	1.71	19189	16039	36192	1.03
Silba	6427	2217	9627	1.84	2001	2479	5281	1.18
Ragusa	5999	2002	9315	1.88	2066	2310	5336	1.22
Tur	1269	407	1987	1.89	0	956	1114	1.17
Royal	3010	1138	3724	1.62	719	1422	2259	1.06

..Genealogies...

Advantages of p-graphs

Advantages of p-graphs

- there are less vertices and lines in p-graphs;
- p-graphs are directed acyclic networks;

- in p-graphs every semi-cycle corresponds to a relinking marriage. There exist two types of relinking marriages:
- blood marriage: e.g., marriage among brother and sister;
- non-blood marriage: e.g., two brothers marry two sisters from another family;
- p-graphs are more suitable for analyses.

..Genealogies...

Advantages of bipratite p-graphs

Advantages of bipartite p-graphs

Bipartite p-graphs have additional advantage: we can distinguish between a married uncle and a remarriage of a father. This property enables us, for example, to find marriages between stepbrothers and stepsisters.

...Genealogies...

Relinking...

Relinking index is a measure of relinking by marriages among persons belonging to the same families. Special case of relinking is a blood-marriage.
Let n denotes number of vertices in p-graph, m number of arcs, and M number of maximal vertices (vertices having output degree $0, M \geq 1$).
If we take a connected genealogy we get

$$
R I=\frac{m-n+1}{n-2 M+1}
$$

For a trivial graph (having only one vertex) we define $R I=0$. $R I$ has some interesting properties:

- $0 \leq R I \leq 1$
- If network is a forest/tree, then $R I=0$ (no relinking).
- There exist genealogies having $R I=1$ (the highest relinking).
- Relinking is usually computed for the largest biconnected component.
Network / Acyclic Network / Info
...Genealogies...
Pajek
...Relinking...

Genealogies

Sources
Patterns with Relinking Index = 1

Relinking merriages (p-graphs with 2 up to 6 vertices)

Sources

Blood marriages

Sources
Representations
Sparse networks
Relinking
Comparison
Fragments
Halibrother-hallsiste
Other analyses The highest number of marriages
The highest nu mabl of childien
The shortest path between two kings

Applying Pajek
Ore grephs
p-graphs
bipartite pog laphs
Assignments

Examples of Relinking...

European nobility - MarijaTerezija.ged

Genealogy contains records about around 60,000 persons of noble origin (collected by Nenad Novaković). We can find there 333 blood marriages where two cousins married, 13 of them in the same component.

..Genealogies...

...Examples of Relinking...

Noble familes are much more relinked than usual families.
Example: In 1854 Franz Jozef (1830-1916) married his sixteen year old cousin 'Sisi'.

Question: Can you find any other relinking marriages in this picture?
...Genealogies...
Pajek
...Examples of Relinking

Brother-sister exchanges and marriages between cousins

Comparing genealogies

For comparison, we took five genealogies:

- Loka. ged - genealogy of Škofja Loka district, Slovenia (P. Hawlina).
- Silba.ged - genealogy of the island Silba, Croatia (P. Hawlina).
Special geographical position.
- Ragusa.ged - marriages among Ragusan (Dubrovnik) noble families between 12 and 16 century. Data collected by I. Mahnken (1960); entered to electronic form by P. Dremelj (1999).

Very restricted marriage rules.

- Tur . ged - genealogy of Turkish nomads, Yörük. Data collected by Ulla C. Johansen and D.R. White (2001). A relinking marriage is a signal of commitment to stay within the nomad group.
- Royal92.ged - genealogy of European royal families - the Kings and Queens of Europe, including Great Britain.

Frequency distribution of fragments						
fragment	Loka	Silba	Ragusa	Tur	Royal	\sum
8 A2	1	0	0	0	0	1
8 A3	1	0	0	0	3	4
\% A4.1	12	5	3	65	21	106
\checkmark B4	54	25	21	40	7	147
\% A4.2	0	0	0	0	0	0
\% A5.1	9	7	4	15	13	48
$1 . \mathrm{A} 5.2$	0	0	0	0	0	0
ψ B5	19	11	47	19	8	104
\% A6. 1	28	28	2	65	13	140
\% A6. 2	0	2	0	0	1	3
$1 . \mathrm{A} 6.3$	0	0	0	0	0	0
88 C6	10	12	19	15	5	61
* B6.1	0	1	2	0	0	3
M B6.2	27	39	63	54	12	194
\% 86.3	47	30	82	46	13	218
- B6.4	0	0	5	3	0	8
No. Indi	47956	6427	5999	1269	3010	
Largest bic.	4095	1340	1446	250	435	
RI	0.55	0.78	0.74	0.75	0.37	

Observations

- Generation jumps for more than one generation are very unlikely.
- There are many marriages B6.3 (spouses of two grandchildren are brother and sister) and B6.2 (two familes were relinked by a marriage between children and again (in the next generation) by a marriage between grandchildren)
- In Tur there are many marriages of types A4.1 and A6.1.
- For all genealogies number of relinking 'non-blood' marriages is much higher than number of blood marriages (this is especially true for Ragusa, exception is Royal92). There were economic reasons for non-blood relinking marriages: to keep the wealth and power within selected families.

type of marriage	Loka	Silba	Ragusa	Tur	Royal
blood-marriages	51	42	9	149	51
relinking-marriages	157	118	239	176	45

Number of individuals in genealogy Tur is much lower than in others, Silba and Ragusa are approximately of the same size, while Loka is much larger genealogy, what we must also take into account.

...Genealogies...

Frequencies normalized with number of couples in p-graph $\times 1000$

	pattern	Loka	Silba	Ragusa	Tur	Royal
δ	A2	0.07	0.00	0.00	0.00	0.00
8	A3	0.07	0.00	0.00	0.00	2.64
8	A4.1	0.85	2.26	1.50	159.71	18.45
\%	B4	3.82	11.28	10.49	98.28	6.15
\%	A4.2	0.00	0.00	0.00	0.00	0.00
\%	A5.1	0.64	3.16	2.00	36.86	11.42
§์	A5.2	0.00	0.00	0.00	0.00	0.00
$\%$	B5	1.34	4.96	23.48	46.68	7.03
88	A6. 1	1.98	12.63	1.00	169.53	11.42
\%	A6. 2	0.00	0.90	0.00	0.00	0.88
\%์	A6.3	0.00	0.00	0.00	0.00	0.00
8	C6	0.71	5.41	9.49	36.86	4.39
$\%$	B6.1	0.00	0.45	1.00	0.00	0.00
8	B6.2	1.91	17.59	31.47	130.22	10.54
8\%	B6.3	3.32	13.53	40.96	113.02	11.42
88	B6.4	0.00	0.00	2.50	7.37	0.00
	\sum	14.70	72.17	123.88	798.53	84.36

Bipartite p-graphs: Marriage between stepbrother and stepsister Using p-graphs we cannot distinguish persons married several times. In this case we must use bipartite p-graphs. For example in bipartite p-graphs we can find marriages between stepbrothers and stepsisters.

...Bipartite p-graphs

Bipartite p-graphs: Marriage among half-cousins

...Genealogies...

Other analyses

Other analyses

People collecting data about their families are interested in several other 'standard' analyses:

- changes in relinking patterns over time;
- special situations: persons married several times, persons having the highest number of children;
- checking whether the two persons are relatives and searching for the shortest genealogical path between them;
- searching for all predecessors/successors of selected person and searching for person with the largest number of known predecessors or successors;
- the largest difference in age between husband and wife, the oldest/youngest person at the time of marriage, the oldest/youngest person at the time of child's birth;
- searching for the longest patrilineage and matrilineage;
- special situations \rightarrow errors made in data entry (network consistency check).

Interesting results...

The highest number of marriages

Sources
Representations
Sparse networks
Relinking
Comparison
Fragments
Hallbrother-halisister
Other analyses
The highest number of marriages
The highest number of children
The shortest path between two kings

Applying Pajek
Ore graphs
p. oranhs
bipartite p-graphs
Assignments

...Genealogies...
...Interesting results...

The highest number of children

English king Edward I (1237-1307) and his wife Eleanor (1241-1290) had 16 children who were born between 1255-1284 (in the picture a daughter without given name is missing). The youngest son (Edward) was the first among sons who survived a childhood. Eleanora had to try sixteen times to fulfill her most important duty as a queen: to give a birth to a men successor who later became a king. 10 out of 16 children died before age 10, only 3 of them lived longer than 40 years.
...Interesting results...

Searching for kinship relations
$32^{\text {nd }}$ American president F.D. Roosevelt (1882-1945).
$43^{\text {rd }}$ American president G.W. Bush (1946).

...Genealogies...
...Interesting results

The shortest genealogical paths between Charles P. A. Windsor (King of UK), Juan Carlos (ex King of Spain), and Alexander (Crown Prince of Yugoslavia) in Royal92.ged

...Genealogies...
Applying Pajek

General instructions:
1 For drawing in layers we compute genealogical depth partition (works for Ore graphs, p-graphs and bipartite p-graphs):

Network / Acyclic Network / Create Partition / Depth Partition / Genealogical

2 After we find some interesting person or couple (e.g. with high number of children or high number of marriages), we extract and draw his/her/its 1 -neighbourhood to check the results
3 In case that genealogy is read as p-graph (recall: p-graphs are acyclic) we get Relinking Index with: Network / Acyclic Network / Info
4 Many interesting results can be found with Pajek with a single command or combining few commands. In case that several commands are needed it is better to use a macro.

Analyses using Ore graph

Example: royal92.ged
Before reading genealogy as Ore graph be sure that Different relations for male and female links is the only option checked in Options / Read-Write (when reading genealogy arcs from father to children are assigned relation number (and line value) 1; arcs from mother to children are assigned relation number (and line value) 2; and edges, which represent marriages, are assigned relation number (and value) 3.

1 Number of children: Output degree (number of outgoing arcs), but first we have to remove marriages (edges): Network / Create New Network / Transform / Remove / all Edges Vertex 1261: Edward_I (Longshanks): 18 children (with 2 viwes).
2 If we are not interested in number of children only but in number of all descendants, we again need network without edges and compute Output Domain: Network / Create Vector / Centrality / Proximity Prestige / Output 2018: Sceaf has 1157 descendants.
3 Similarly, for number of ancestors, compute Input Domain: Network / Create Vector / Centrality / Proximity Prestige / Input Prince Henry (116) and Prince William (115) have 598 ancestors.

4 Number of marriages: Degree (number of edges attached to vertex), but first we have to remove the parent relation (arcs): Network / Create New Network / Transform / Remove / all Arcs
828: Henry_VIII Tudor had 6 viwes.
5 Shortest genealogical path among any two individuals:
1 Transform all arcs to edges:
Network / Create New Network / Arcs \rightarrow Edges / All
2 Find the shortest path(s) as usually.
3 Extract subnetwork induced by vertices on the shortest path (reported in the obtained partition) from original network (the one with arcs and edges).
4 Compute genealogical layers.
5 Draw in layers and optimize the layout.
Find the shortest genealogical path between ex Spanish King Juan Carlos (435) and Prince William (115).

When some operations need several commands to be executed it is better to use a macro.

Genealogies...

...Applying Pajek to Ore graphs

6 Longest patrilineage and matrilineage in Ore graph Patrilineage: Lineal descent traced through the male line - in each generation at least one male descendant is born (important for keeping the surname and other privileges). Matrilineage: Lineal descent traced through the female line in each generation at least one female descendant is born.

As Network select genealogy, as Partition select Gender partition, as Vector select Year of Birth.
For the longest patrilineage run (Macro / Play)
LongestPatrilineage.mcr, for the longest matrilineage run LongestMatrilineage.mcr.
In Draw window select Options / Mark Vertices Using / Vector Values and set number of decimals to 0 (Options / Layout / Decimal Places 0).
To find the longest path not taking gender into account run LongestChain.mcr.

Searching for relinking marriages - fragments - in p-graphs:

- Read genealogy as p-graph - before reading check only: Options / ReadWrite GEDCOM - Pgraph.
- Read Pajek project file frag16.paj with all 16 fragments: File / Project File / Read (or F1).
- Select first fragment (Marriage among children) as the first network and genealogy as the second network.
- Run Networks / Fragment (First in Second). Before starting search (Find) make sure that only "Extract Subnetwork" and "Same vertices determine one fragment at most" are checked.
- As result we get all fragments found. Instead of running this command by hand 15 more times we can also run Macro / Repeat Last Command. Since the second network is always the same, we must fix it (Fix (Second) Network) and answer 15 - run the command for the 15 remaining fragments.
..Genealogies...

Genealogies

Sources
Representations
Sparse networks
Relinking
Comparison
Fragments Halibrother-halisiste

Other analyses The highest numbe The highest numbe of children

As result we get:

1 Vector with 16 cells ("Number of Fragments"), explaining how many times each of 16 fragments occurred. royal92.ged: $0,3,22,7,0,13,0,8,16,1,0,5,0,13,16,0$
216 new networks which contain fragments found ("Subnetwork induced by...").
3 Corresponding 16 new partitions, telling which vertices are involved in fragments found.

Visualizing results:

Select one of the resulting networks. Network can be drawn using macro DrawFragments.mcr. Before running select network with fragments found ("Subnetwork induced by Sub fragments like N2 in N1"), compatible partition ("Sub fragments like N2 in N1") and vector that we would like to use in visualization (e. g. "Year of Birth of Men").
We can optimize picture several times using Layers / Optimize layers in x direction. Do not forget to select Options / Mark Vertices Using / Vector Values.

We can use two vectors in Pajek visualizations. For example, we can show year of birth of women as well.
Select vector ("Year of Birth of Women") and partition obtained as result of corresponding fragment searching (e. g. "Sub fragments like N2 in N1").
Run Operations / Vector + Partition / Extract Subvector and leave the answer as suggested (1 - *). Then select the obtained vector as the second vector and draw the network again.
..Genealogies...
Applying Pajek to bipartite p-graphs...

Searching for relinking marriages in bipartite p-graphs:
Marriages among half brother and half sister (or marriages among half cousins) can be found only in bipartite pgraphs:

- In Options / Read-Write check the following two items: GEDCOM - Pgraph and Bipartite Pgraph.
- Read the fragment stored in file HalfBrotherSister*.net or (HalfCausins*.net) and set it as the first network.
- Select genealogy (which must be loaded as bipartite p-graph) as the second network.
- Networks / Fragment (First in Second) / Find.
- Draw obtained fragments as explained earlier.
- But looking at the results some fragments look strange...

Providing more details in fragment searching:

Note that only fragments with triangle or circle at the bottom really represent marriages between half brother and half sister (or marriages between half cousins). Others are probably errors produced by data entry or represent some other situation.
The problem can be solved by providing more details in fragment searching: If we select Check values of lines or Check relation numbers only fragments that match also in values of lines (relation numbers) are reported as a result.
But things get more complicated here: We have two fragments for searching for marriages among half brother and half sister:

- father married twice:

HalfBrotherSister-Father2TimesMarried.net

- mother married twice:

HalfBrotherSister-Mother2TimesMarried.net
and eight fragments for marriages among halfcousins:
HalfCausins*.net
In genealogy royal92.ged we find one marriage halfbrother-halfsister and one marriage among halfcousins.

..Genealogies...

Assignments with some results...

Sources
Pepresentations
Sparse networks
Relinking
Comparison
Fragments
Halibrotherchalisiste
Other analyses
The highest number of marriages
Thie higitest numbes of children
The shortest paih belween two kings

Applying Pajek
Ore graphs
p.graphs
bipartite p-graphs

royale.ged

Ore graph:
1 2758: Roberto/di Borbone/: 24 children (with 2 viwes).
2 Two persons with 11000 descendants, including 6023: P,pin/Carolingien/.
3 Five persons with 7487 ancestors, including 7487: Gabrielle/de Habsbourg-Lorraine/.

4 Two persons with 7 viwes, one of them 16329: Charles/Stuart/.
5 Find the shortest genealogical path between two persons with the highest number of marriages: i.e. 16329: Charles/Stuart/, and 14812: Ivan/Rurikide/.
p-graph:
6 frequencies of 16 fragments in p-graph:
$1,28,218,114,0,181,0,159,453,28,0,76,9,340,319,29$
Bipartite p-graph:
7 In genealogy royale.ged we cannot find any marriages between halfbrothers and halfsisters.
We can find 18 marriages among halfcousins, all of them are correct.

Genealogies...

...Assignments with some results

Marija Terezija.ged

Ore graph:
1 4034: Algirdas Vel. Kn. (Litovski)/1345/: 24 children (with 2 viwes).
2 Two persons with 21194 descendants, including 37051: Achaemenes.
3 Four persons with 10147 ancestors, including 13105: Jožef Emanuel Pc./Liechtensteinski/.
4 4314: Maksimilijan I. (Avstrijski),/C.Rimski/: 8 viwes.
5 Find shortest genealogical path between "Karolina G.
/Nassau-Saarbrückenska/ (1704-1735)" and "Marija Terezija Nadvojv./Avstrijska/ (1717-1780)" (vertices 13360 and 8500).
p-graph:
6 frequencies of 16 fragments in p-graph:

$$
18,43,333,185,2,220,0,194,538,34,0,64,4,361,367,24
$$

Bipartite p-graph:
7 In MarijaTerezija.ged we can find 12 marriages between halfbrothers and halfsisters, but if we look into details we find out that only four of them are correct (three of them where father is married twice, and one of them where mother is married twice).
We can find 30 marriages among halfcousins, 28 of them are the right ones, only two of them are wrong.

...Genealogies

More assignments

1 Read and draw genealogy stored in gedcom file family.ged as Ore graph, p-graph and bipartite p-graph. For depth partition use: Network / Acyclic Network / Create Partition / Depth Partition / Genealogical
2 pres 2020 .ged is a collection of the presidents of the US, with their ancestors and descendants updated to 2020. Find some interesting genealogical paths between american presidents, e.g. US President No. 26 - Theodore /Roosevelt/ (1463) and US President No. 43 George Walker /Bush/ (1191).
3 The GEDCOM file Isle_of Man.ged contains the combined genealogies of approximately twenty families from the British Isle of Man. Describe the overall structure of this network and the sections with structural relinking. Which types of relinking do occur?
4 The GEDCOM file Silba. ged contains genealogy of families from the Croatian island Silba. Search for different relinking marriages.
5 The GEDCOM file Ragusa. ged contains genealogy of noble families between $12^{\text {th }}$ and $16^{\text {th }}$ century from Dubrovnik (Ragusa is old name for Dubrovnik, Croatia). Which types of relinking do occur?

